
Engagement-weighted and style-aware scoring for fashion compatibility

Sally Lee
Stanford University

sunminl@stanford.edu

Melissa Liu
Stanford University

mliu1785@stanford.edu

Abstract

We enhance outfit compatibility prediction by extending
the OutfitTransformer framework with two contributions:
engagement-weighted loss and style-aware scoring. For
the loss, we incorporate the number of likes an outfit re-
ceived on Polyvore as a per-example weight in the focal
loss, applying log-scaling and clipping to normalize the ef-
fect of highly popular outfits. For style-aware scoring, we
use Sentence-BERT to embed outfit descriptions and style
keywords into a shared space, allowing the model to ad-
just compatibility scores based on a user-specified style at
inference time. We curate a Polyvore-based dataset con-
taining outfit images, item descriptions, and likes, and de-
sign an effective negative sampling strategy by selectively
replacing fashion items. Experimental results show that
likes-weighted loss improves precision over the baseline by
prioritizing widely liked outfits, while style-aware scoring
demonstrates strong alignment with human judgments, par-
ticularly for outfits with clear and distinct stylistic themes.
Our findings suggest that incorporating human engagement
signals and stylistic conditioning can improve the person-
alization and interpretability of outfit recommendation sys-
tems.

1. Introduction
Fashion compatibility prediction is an emerging chal-

lenge in AI-powered retail, where the goal is to determine
whether a group of clothing items forms a coherent and vi-
sually appealing outfit. This task is important because con-
sumers increasingly expect personalized styling recommen-
dations that reflect their tastes and the latest trends. We can
leverage the growing availability of outfit-level interaction
data, such as Polyvore outfits and how many likes they re-
ceived, to align model predictions more closely with human
preferences and stylistic intent.

Our motivation stems from the observation that existing
models often treat all training examples equally and do not
account for the subjective and style-driven nature of fash-
ion. Yet in real-world settings, some outfits resonate more

with users than others, and whether an outfit is going for a
boho or minimalist look can dramatically shift how people
assess its compatibility. To address this, we propose two en-
hancements to OutfitTransformer, the 2023 model by Sarkar
et al. [11]. As discussed in the later Related Work section,
OutfitTransformer uses a transformer encoder to compute
a global embedding representation of an outfit in order to
capture higher-order interactions between items in an outfit
and outputs a scalar compatibility score s ∈ [0, 1], where
a higher score indicates higher compatibility of the outfit
items [11]. We aim to modify this model so that:

• The training loss is weighted by the number of likes an
outfit received on Polyvore.

• Compatibility scoring can be conditioned on an op-
tional style keyword.

This approach bridges aesthetics with human engagement
and honors stylistic nuances, allowing for more personal-
ized and meaningful fashion recommendations. The inputs
to our model at inference time are:

• An outfit, represented as an unordered set of 2 to 8
fashion items, each including an image and optional
text description

• An optional style keyword, such as “boho” or “mini-
malist”

The model outputs are:

• A scalar compatibility score s ∈ [0, 1]

• A style-specific compatibility score ss ∈ [0, 1], if a
style keyword is provided, representing how well that
outfit fits the target style

2. Related Work

There were several approaches to generating compatibil-
ity scores in fashion recommendation systems.

1



2.1 Bi-LSTM

A Bidirectional Long Short-Term Memory (Bi-LSTM)
network treats outfit items as sequential elements, similar
to words in a sentence, and processes the outfit in both
forward and backward directions, capturing dependencies
among items [3]. Each item embedding is passed through
the Bi-LSTM, and the hidden states are combined to predict
a compatibility score for the outfit [3].

Although the Bi-LSTM model is simple and intuitive be-
cause it treats clothing items as a sequence, outfits inher-
ently lack a natural or meaningful order. While Bi-LSTM
captures local contextual relationships, it is less suited for
the unordered structure of outfits; the sequential depen-
dencies it assumes to exist and models may not be accu-
rate [3]. Additionally, as outfit size grows, Bi-LSTM be-
comes harder to train and can suffer from vanishing gra-
dients, limiting its scalability for larger or more complex
outfits [3].

2.2 Pairwise Comparisons

Several approaches generate outfit compatibility scores
by explicitly computing pairwise relationships between
items and aggregating them. For instance, Wang et. al’s
Multi-Layered Comparison Network (MCN) extracts hier-
archical features with CNNs and Global Average Pooling
(GAP) to compare items at multiple semantic levels, such
as color, texture, and style [16]. The model learns com-
patibility from type-specified pairwise similarities and uses
backpropagation gradients to diagnose incompatible item
pairs [16]. Type-aware embedding methods can also be
used to project general image embeddings into type-specific
compatibility spaces, allowing the model to learn special-
ized embeddings for different item type pairs, such as top-
shoes or top-bottom [12]. Lu et. al’s Multi-layer Non-
Local Feature Fusion (MNLFF) framework enhances pair-
wise comparison by combining visual features across differ-
ent CNN layers to incorporate both low-level and high-level
attributes [8].

Pairwise comparison methods generate outfit compati-
bility scores by explicitly comparing all possible item pairs
and aggregating their relationships. One major strength of
this approach is its fine-grained modeling of item interac-
tions, allowing the model to directly assess how individ-
ual pairs of items contribute to overall outfit compatibil-
ity. However, these methods assume that outfit compati-
bility can be fully decomposed into independent pairwise
relations, ignoring higher-order or global outfit coherence.
Thus struggle to capture the holistic aesthetic of outfits. Ad-
ditionally, as outfit size increases, the number of item pairs
grows quadratically, leading to scalability challenges and
increased computational costs.

2.3 Graph-Based Approaches

Graph-based methods predict outfit compatibility by
modeling outfits as graphs, converting the compatibility
scoring task into a graph inference problem. A node-wise
Graph Neural Network (NGNN), for instance, represents
each fashion item category as a node and item interactions
as edges [1]. Two directed edges for each pair of cate-
gories are used to capture asymmetric relationships, reflect-
ing that compatibility can differ based on interaction direc-
tion; matching socks to shoes differs from matching shoes
to socks [1]. Meanwhile, Vivek et. al’s dot-attention Graph
Neural Network uses dot-product attention to compute the
weight between nodes, constructing outfit graphs where
nodes are fashion items and edges model visual relation-
ships [13]. Wang et. al’s unified representation model con-
structs a graph that integrates visual-semantic information
to predict compatibility and models the latent dependen-
cies among outfit items using graph attention networks [14].
Li et al. also proposed OCPHN, which represents out-
fits as hypergraphs; they extend graphs to model interac-
tions between multiple categories simultaneously and em-
ploy hypergraph convolution to learn refined node represen-
tations [6].

A key advantage of graph-based approaches is their
ability to capture complex, high-order relationships among
multiple outfit items beyond simple pairwise comparisons,
leading to more holistic compatibility evaluation. However,
a notable weakness is the high computational cost, espe-
cially at inference time when new items are introduced into
the catalog, as reconstruction of potentially large and dy-
namic graphs is required.

2.4 Transformer-Based Approaches

Transformer-based models are considered the state-of-
the-art for outfit compatibility prediction. They model out-
fits as unordered sets and capture complex item relation-
ships through self-attention. Sarkar et al. proposed Out-
fitTransformer, which uses a Transformer encoder with a
learnable outfit token to produce a global outfit embedding,
effectively capturing higher-order item interactions [11].
Jung et. al’s History-Aware Transformer (HAT) extends this
architecture with a second Transformer to incorporate user
purchase history, enabling personalized compatibility pre-
dictions [5]. More recently, Firmansyah et al. also pro-
posed Slay-Net enhanced Transformer-based outfit recom-
mendation, which introduces a curriculum learning strategy
that trains the model in stages; combined classification and
contrastive objectives on easier examples are used first, fol-
lowed by fine-tuning on harder contrastive tasks [2].

Overall, Transformer-based models excel at capturing
global outfit structure and higher-order item dependencies
through attention mechanisms. However, their high model
capacity typically demands large training datasets and sig-

2



nificant computational resources.

3. Methods
3.1 Baseline: OutfitTransformer

The OutfitTransformer models an outfit as an unordered
set of items, each embedded via a pretrained image en-
coder (ResNet-18) and optional text encoder (Sentence-
BERT) [11]. A special “outfit token” is prepended to the
sequence of item embeddings, and a transformer encoder
processes the entire set. The final representation of the out-
fit token is used to predict a compatibility score via an MLP.
The model is trained using focal loss, which is a modifica-
tion of cross-entropy loss first used by Lin et al. to down-
weight easy examples and focus on harder ones for binary
classification [7]. The focal loss for a single example i is

Li(pi, yi) =

{
−α(1− pi)

γ log(pi), if yi = 1

−(1− α)pγi log(1− pi), if yi = 0

where yi is an indicator variable for whether outfit i is a
ground-truth compatible outfit, pi is the MLP head’s output
predicted probability that outfit i is compatible, α ∈ [0, 1]
is a weighting factor to handle class imbalance, and γ ≥ 0
is a parameter to down-weight easy examples [7]. Note that
for easy examples, either pi is large for yi = 1 or pi is small
for yi = 0 [7].

3.1 Likes-Weighted Loss

We weight each training example’s focal loss by the
number of likes that outfit received to reflect human pref-
erences, inspired by previous work that scales the loss con-
tribution of each example by how informative it is [10, 15].
Specifically, the loss for the ith outfit becomes

Liweighted
(pi, yi) = wi · Li(pi, yi)

where wi is the weight of the ith example. This empha-
sizes high-like outfits more during training, encouraging the
model to learn compatibility patterns aligned with popular
and widely approved outfits. To compute wi, we use

wi = 1 + a · log(1 + li/b)

where li is the number of likes received by the ith outfit;
Hu et. al used this equation to assign confidence scores to
training examples [4]. This technique is helpful for our task
because log scaling dampens the impact of high-like outfits,
preventing a few examples with a disproportionately high
number of likes from exerting too much influence on the
loss [4]. Additionally, the 1 in the log ensures log(1+ li/b)
is always non-negative, thus allowing the 1 at the front to
give all examples wi ≥ 1. Note that an example with 0
likes recieves wi = 1. We attempt hyperparameter tuning
of a and b in the Experiments and Results section.

To accommodate the new data format required for likes-
weighted loss, we wrote three new classes for 1) a single
example with likes, 2) an entire dataset of examples with
likes, and 3) a query for items from an outfit with likes.
We also had to code a new collate function and a new loss
function.

3.2 Style-Aware Scoring via Title Embedding Sim-
ilarity

To incorporate style awareness, we extended the original
testing pipeline with an additional scoring module. This
extension is implemented on top of the baseline testing file
without altering the original training or model architecture.

Manual judgment of an outfit’s style is inherently chal-
lenging, as titles are often user-generated phrases such as
”Boho Chic Fall Look” or ”Minimalist Streetwear”, which
encode stylistic intent in an implicit and inconsistent man-
ner. Consequently, it is difficult to objectively determine an
outfit’s compatibility with specific styles. To address this,
our code introduces a flexible scoring mechanism that al-
lows the user to specify a style keyword from a predefined
list of 20 popular fashion styles, such as ”casual”, ”boho”,
or ”goth”, to obtain a style-aware compatibility score. This
list of style keywords is hardcoded in the script to ensure
consistency in comparisons across different outfits.

For style-aware scoring, we utilized the Sentence-BERT
model by Reimers and Gurevych [9], pretrained on large-
scale language data for semantic similarity tasks. We load
Sentence-BERT during inference to encode each outfit’s
textual information into a continuous vector, referred to as
the style embedding. This dense semantic representation is
intended to capture the stylistic characteristics embedded in
the outfit’s description without requiring retraining.

The item metadata used for generating style embeddings
is structured as follows:

{
"item_id": 2124272891,
"url_name": "christmas print tee",
"description": "A fashion look
by beebeely-look...",
"categories": [
"Clothing",
"T-Shirts"

],
"title": "christmas print tee",
"related": [
"t-shirts"

],
"category_id": 21,
"semantic_category": "t-shirts"

},

At inference time, our code extracts and concatenates all

3



item-level metadata, specifically the urlname, description,
and title fields, into a unified text string. This text is then
fed into Sentence-BERT to produce the outfit embedding.
We similarly encode style keywords, mapping both outfits
and style labels into the same embedding space to allow di-
rect comparison. Then, this yields embeddings eoutfit and
ekeyword.The raw similarity is computed via cosine similar-
ity:

cos(ekeyword, eoutfit) =
ekeyword · eoutfit

∥ekeyword∥ ∥eoutfit∥

However, raw cosine similarities range from (−1, 1) and
are not directly comparable across different outfits or styles.
To address this, the code computes cosine similarities be-
tween the outfit embedding and all 20 predefined style em-
beddings. It then normalizes the selected keyword’s sim-
ilarity relative to the minimum and maximum similarities
across all styles for that outfit:

normalized score =
c(eq, eo)−min

k
c(ek, eo)

max
k

c(ek, eo)−min
k

c(ek, eo) + ε
.

where c(x, y) is a cosine similarity between x ad y and ε is a
small constant for numeric stability. While alternative nor-
malization techniques exist—such as global min-max nor-
malization or softmax scaling—they come with trade-offs.
Global min-max normalization applies a uniform linear
scaling to all outfits but may fail to differentiate styles for
outfits with tightly clustered similarities. Softmax scaling
amplifies differences but sacrifices interpretability, which
is crucial for user-facing applications. Relative normaliza-
tion offers contextual scaling and maintains interpretability,
making it the most suitable choice for our task.

Then, we obtain the style specific score

ss = s× normalized score

This approach enables the same outfit to receive differ-
ent compatibility scores depending on the user-specified
style. For instance, an outfit described as ”Cozy Winter
Loungewear” might have s = 0.8, but ultimately receive
a higher score of ss = 0.72 for the ”casual” prompt and
a lower score of ss = 0.36 for ”boho” or ss = 0.21 for
”formal”.

4. Dataset and Features
Polyvore.com was a popular online fashion platform

where users could create and upload virtual outfits and like
other users’ outfits, until it was discontinued in 2018.

OutfitTransformer was run on preprocessed Polyvore
data that excludes the number of likes and outfit description,
which are critical for our likes-weighting and style-specific

scoring enhancements, respectively [11]. Additionally, the
OutfitTransformer Github repo did not contain the negative
examples, nor did the paper detail how they generated neg-
ative examples [11]. Thus, we chose to use the Polyvore
dataset curated by Han et al. for Bi-LSTM; it contains
22,617 complete outfits created by Polyvore users. Each
outfit consists of 2–8 fashion items, with item level images,
category labels, outfit-level metadata, and textual titles [3].
The dataset excludes outfits curated prior to 2014 due to
concerns that they are outdated [3]. Additionally, it keeps
only the first eight fashion items for outfits containing too
many items and deletes any items with non-fashion ”cate-
goryid” such as background, text, and decorations [3]. The
train / validation / test split is 17,316 / 1,497 / 3,804 [3].

We pre-processed the Bi-LSTM data into json files that
fit the format used by OutfitTransformer. To ensure our
images aligned as closely as possible with the OutfitTrans-
former images, we computed the mean and standard devi-
ation of the RGB channel values for the pixels of all Out-
fitTransformer item images and normalized the Bi-LSTM
item images by the mean and standard deviation for each
RGB channel. Though the original item images vary in
pixel dimensions, the OutfitTransformer model includes a
script that resizes all images to 224x224 pixels before using
them as inputs. Each example outfit is formatted as such:

{
"label": 1,
"question": [1201612711, 1201612712,
1201612713, 1201612714, 1201612715,
1201612716, 1201612717, 1201612718],
"likes": 9,
"desc": "A fashion look from April
2014 featuring destroyed shirt,
skinny fit jeans and vans shoes.
Browse and shop related looks."

}

where “question” corresponds to a list of item IDs, each of
which is referenced to obtain an image of that item. As for
the negative examples required for focal loss, we replaced
randomly selected items in each positive outfit with random
items of the same ”categoryid” to create its corresponding
negative outfit. Further details are included in the Experi-
ments and Results section. For instance, here is the negative
outfit corresponding to the positive outfit above:

{
"label": 0,
"question": [1685198071, 1201612712,
1961414984, 1419047385, 1763980522,
2160255475, 1201612717, 2167947836]

}

A “label” of ‘1’ indicates a positive outfit, while a “label”
of ‘0’ indicates a negative outfit. Note that six of the eight

4



Figure 1. Item images for example outfit.

Figure 2. Item images for example negative outfit.

original items have been randomly replaced; only the sec-
ond and seventh items remain the same.

5. Experiments and Results

5.1 Generating Negative Examples

We experimented with different methods to generate
negative examples. First, we tried replacing min(k, n)
items in with random items of the same “categoryid”, where
n is the number of items in a specific outfit, for k = 3,
k = 5, and k = 7, min(k, n). The items were randomly
chosen to be replaced. k = 7 performed the best out of
these three trials with a validation f1 score of 0.399 com-
pared to 0.058 and 0.289 for k = 3 and k = 5, respectively
(Table 1). These results suggest that when we only replace
a few items, the negative outfits generated are not incom-
patible enough compared to the original outfits. Thus, the
model might have found it difficult to learn the distinction
between the positive and negative examples.

Next, we tried replacing min(k, n − 2) random items
for k = 7; our reasoning was that under plain k = 7, all
items would be replaced for outfits with fewer than 8 items,
resulting in negative outfits that were too random for the

model to learn from. This trial, labeled as k = 7∗, achieved
a validation f1 score of 0.537, which was higher than plain
k = 7 (Table 1).

Finally, we tried replacing the last min(k, n − 2) items
listed for k = 7 in a trial labeled k = 7∗∗. For instance, if
an outfit contained a shirt, pants, shoes, and two bracelets,
we would replace the 5-2=3 items, which are the shoes and
two bracelets; the reasoning behind this final trial was that
the items most integral to the outfit’s style and cohesiveness
are typically listed first. The validation f1 score for k = 7∗∗

was 0.396, which was worse than k = 7∗ (Table 1). This
may be because the distinction between the original outfits
and the negative outfits produced by k = 7∗∗ was too small
since we kept the most important items the same. Thus, we
decided to use k = 7∗ in the end.

Table 1. Likes-weighted model epoch 8 performance when trained
on negative examples with various generation methods.

k Train Loss Val Loss Train F1 Val F1
3 0.086 0.109 0.417 0.058
5 0.064 0.105 0.667 0.289
7 0.054 0.093 0.745 0.399
7∗ 0.069 0.073 0.642 0.537
7∗∗ 0.070 0.091 0.639 0.396

5.2 Likes-Weighted Loss

We attempted hyperparameter tuning for the likes-
weighted model, testing a = 0.5, 1.0, 1.5 and b =
10, 100, and1000 for a and b in the wi equation provided
in the Methods section. We used the default settings of
α = 0.5 and γ = 2.0 for the hyperparameters in the fo-
cal loss equation, rather than tuning then since Sarkar et. al
already found these to be the optimal settings [11].

The highest performing model was a = 1.5, b = 10
at epoch 11, with validation f1 score of 0.713 (Table 2).
Larger a increases the difference in loss contribution be-
tween highly liked and less liked examples, amplifying the
influence of likes more. Smaller b makes the log function
more sensitive to changes in like count, especially at the
lower end, so that 1 like vs. 10 likes might cause a large dif-
ference in weight. Thus, these results suggest that examples
with higher likes are particularly valuable for learning com-
patibility and that the best performing weighting scheme
should give high-like outfits significantly more importance,
while also reflecting small increases in like count.

Additionally, a = 1.0, b = 10 performed almost as well
a = 1.5, b = 10, with validation f1 score of 0.707 at epoch
10; this indicates that that the optimal value for a might lie
between 1.0 and 1.5, and further tuning could yield better
results (Table 2).

The a = 1.0, b = 10 likes-weighted model had the
highest validation f1 score of 0.794 at epoch 27, while the
baseline model had the highest validation f1 score of 0.777

5



at epoch 39. Thus, we ran these epoch 27 likes-weighted
model and epoch 39 baseline model on the test data (Table
3).

The likes-weighted model had higher test accuracy and
precision (0.619 and 0.614 compared to the baseline’s 0.615
and 0.592), indicating that it is better at avoiding false pos-
itives and makes more correct predictions overall (Table 3).
However, it had lower recall and f1 (0.642 and 0.628 com-
pared to the baseline’s 0.740 and 0.658), suggesting that
it misses more true positives and has less balanced perfor-
mance (Table 3). Overall, these results tell us we can more
more confident in an outfit deemed compatible by the likes-
weighted model compared to an outfit deemed compatible
by the baseline, but the likes-weighted model may be too
conservative and noninclusive in labeling compatibility.

From the plateauing validation f1 scores, we see that the
baseline begins overfitting around epoch 40, while the likes-
weighted model begins overfitting a bit earlier around epoch
30 (Figure 3). Overfitting is also evident in the slightly in-
creasing validation loss starting around epoch 25 for both
models (Figure 3). The likes-weighted validation loss is
more erratic and remains significantly higher than the base-
line validation loss, indicating poorer generalization (Figure
3). The more aggressive overfitting and poor generalization
of the likes-weighted model may be because the weighted
loss function encourages it to put too much emphasis on a
few examples.

Table 2. Likes-weighted model performance with different values
of a and b; epoch with the highest validation f1 score up to epoch
15 chosen.

a b Train Loss Val Loss Train F1 Val F1 Epoch
0.5 10 0.086 0.123 0.773 0.703 12
0.5 100 0.058 0.090 0.798 0.680 15
0.5 1000 0.055 0.078 0.762 0.607 11
1.0 10 0.105 0.166 0.774 0.707 10
1.0 100 0.074 0.137 0.778 0.591 11
1.0 1000 0.054 0.085 0.782 0.611 12
1.5 10 0.117 0.230 0.776 0.713 11
1.5 100 0.087 0.141 0.766 0.664 10
1.5 1000 0.064 0.087 0.751 0.626 10

Table 3. Test performance of baseline model with highest valida-
tion f1 score versus a = 1.0, b = 10 likes-weighted model with
highest validation f1 score.

Model Accuracy Precision Recall F1
Baseline (epoch 39) 0.615 0.592 0.740 0.658

Likes-weighted (epoch 27) 0.619 0.614 0.642 0.628

5.3 Style-Aware Scoring

We applied style-aware scoring to the test set, comput-
ing compatibility scores between each outfit and 20 prede-
fined style keywords. Table 4 presents examples of the re-

Figure 3. Training and validation loss and f1 scores for baseline
and highest-performing likes-weighted model over 50 epochs.

sults, showing each outfit’s original compatibility score and
the normalized style-aware scores for a selection of style
keywords. By examining the normalized scores, we can
identify the style keyword with the highest compatibility
for each outfit. For instance, outfit 3 achieves the highest
score with ”business casual” (1.00) and outfit 5 with ”cot-
tagecore” (1.00).

Outfit Original Boho
Business
Casual Casual Chic

Cottage
core

1 0.40 0.14 0.35 0.36 0.27 0.07
2 1.00 0.29 0.81 0.62 0.57 0.40
3 1.00 0.58 1.00 0.75 0.29 0.61
4 1.00 0.47 0.11 0.12 0.38 0.89
5 1.00 0.34 0.78 0.82 0.36 1.00

Table 4. Five examples of style-aware scoring (rounded to the
hundredth; only 5 styles shown for clarity). Style-aware scores
are normalized cosine similarities between outfit descriptions and
style keywords.

6



Figure 4. Four outfits with the style keyword of highest compatibility score predicted by the model and the style keywords selected by three
human subjects.

5.3.1 Evaluation with Human Subjects

To assess the validity of the style-aware scores, we se-
lected 20 outfits and recorded the highest-scoring style key-
word for each outfit according to the model. Three human
subjects independently reviewed the same outfits and se-
lected the style keyword they believed best described each
one. When comparing the model’s top predictions with the
human responses, we found notable patterns. For 10 out-
fits, all three subjects unanimously selected the same style
keyword, and the model’s highest-scoring style typically
matched this unanimous human choice. For instance, in
one case, all subjects selected ”sporty” as the most fitting
description, and the model also ranked ”sporty” highest for
the same outfit (Figure 5).

However, there were also cases where the subjects dis-
agreed on the appropriate style. In four instances, the
model’s prediction still aligned with the majority opinion
among the subjects. For example, for outfit 2, two subjects
labeled the outfit as ”punk” while one chose ”casual”; the
model similarly selected ”punk” as the top style. In six in-
stances, the model’s prediction diverged from all subject re-
sponses. For example, for outfit 4, no subject chose ”goth,”
but the model assigned the highest compatibility score to
”goth” (Figure 5).

5.3.2 Error Analysis and Insights

We further analyzed the disagreement cases to better
understand the limitations of the style-aware scoring ap-
proach. One major factor was that some outfits naturally
fit multiple styles, making the labeling inherently ambigu-
ous. For instance, outfit 2 could reasonably be interpreted
as both ”casual” and ”punk” (Figure 5), leading to varia-
tion in human judgments and possible divergence from the
model’s prediction.

Another limitation stems from the model’s reliance
solely on textual metadata, such as the title and description,
without access to visual information like color, material, or
silhouette. This lack of visual cues can lead to misclassi-
fication when key stylistic elements are omitted from the
text. For example, if a hot pink color—often associated with
”chic” style—is not mentioned in the metadata, the model
might fail to recognize the outfit’s alignment with that style
as outfit 1 (Figure 5).

Finally, the Sentence-BERT model itself introduces po-
tential biases by overemphasizing certain words during em-
bedding generation. Specific phrases in the metadata can
disproportionately influence the resulting embedding. For
instance, in the case of outfit 4, the description included
the phrase ”metal stone finish,” which may have caused the
model to focus on these words and incorrectly assign the
”goth” label, even though the overall aesthetic of the outfit
was not goth-like (Figure 5).

7



Outfit Original Subject 1 Subject 2 Subject 3
Outfit 1 1.00 0.68 0.65 0.65
Outfit 2 1.00 1.00 0.75 1.00
Outfit 3 0.10 0.10 0.10 0.10
Outfit 4 1.00 0.57 0.65 0.57

Table 5. Comparison of the original compatibility score with style-
aware scores corresponding to human-selected style keywords for
each outfit.

5.3.3 Alignment Between Model Scores and
Human-Selected Styles

To further evaluate the model’s style-aware scoring, we
analyzed how well the model scored the specific style key-
words selected by human subjects. For each outfit, we
recorded the model’s compatibility score for the style key-
word chosen by each subject (Table 5).

Our analysis reveals several important trends. First, for
outfits where human subjects largely agreed, the model
tended to assign relatively high scores (0.65–1.00) to the
selected styles, even if it did not always rank them as the
highest. For example, Outfit 2 received perfect scores (1.00)
for two of the subjects’ chosen styles and a moderately
high score (0.75) for the third, demonstrating strong model-
human alignment. Second, in more ambiguous cases, the
model still showed moderate agreement. For Outfit 4, where
the subjects’ opinions varied, the model assigned scores
around 0.57–0.65 to the chosen styles, indicating partial
recognition of stylistic relevance.

6. Conclusion
In this work, we have introduced likes-weighted loss and

style-aware scoring to enhance outfit compatibility predic-
tion.

The likes-weighted model is too cautious in labeling out-
fits as compatible, suffering from overfitting on a few high-
like examples and poor generalization; it rewards popular
outfits, possibly at the expense of their more niche coun-
terparts. For applications that seek to prioritize mainstream
outfit compatibility, the likes-weighted model may be more
reliable. For inclusive outfit recommendations that accept a
more diverse array of styles, however, the baseline is more
valuable. A future avenue to explore is alternative func-
tions to compute the outfit weights that mitigate the overfit-
ting and lack of outfit inclusivity promoted by the current
weighting scheme. As discussed in the Experiments and
Results section, we would also attempt further, more fo-
cused, hyperparameter tuning, especially to determine the
optimal setting for ’a’.

For style-aware scoring, our evaluation showed that even
without style conditioning during training, the model can
achieve reasonable alignment between style-aware scores
and human-annotated style labels. For outfits where hu-
man subjects agreed on the stylistic label, the model of-

ten produced high scores for the corresponding style key-
words, demonstrating strong model-human agreement. The
normalization step further helped to emphasize the domi-
nant style per outfit, although in some cases it may have
masked the multi-style nature of certain outfits. For future
work, we would like to explore alternative normalization
techniques that allow an outfit to be recognized as fitting
multiple styles simultaneously. Instead of enforcing a sin-
gle dominant style, we aim to develop scoring strategies that
enable high scores for multiple stylistically appropriate key-
words.

7. Contributions and Acknowledgements

Sally Lee worked on data augmentation, negative ex-
ample generation, and Sentence-Bert embeddings for style-
specific scores. She helped draft related work, methods, re-
sults, and conclusion and revised introduction and data.

Melissa Liu worked on data augmentation, negative ex-
ample generation, and likes-weighted focal loss. She helped
draft introduction, data, methods, results, and abstract and
revised related work.

Thanks to the Sarkar et. al for their ideas and Outfit-
Transformer code repo.

References
[1] Z. Cui, Z. Li, S. Wu, X. Zhang, and L. Wang. Dressing as

a whole: Outfit compatibility learning based on node-wise
graph neural networks. arXiv preprint arXiv:1902.08009,
2019.

[2] I. Firmansyah, R. Scholz, A. Nahmendorff, N. S. Le, S. El-
sayed, and L. Schmidt-Thieme. Learning set embeddings
for fashion compatibility recommendation. In Strategic and
Utility-aware Recommendations (SURE) Workshop @ Rec-
Sys 2024. CEUR Workshop Proceedings, 2024. To appear.

[3] X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis. Learning fash-
ion compatibility with bidirectional lstms. In Proceedings
of the 2017 ACM on Multimedia Conference (MM), pages
1078–1086, Mountain View, CA, USA, 2017. ACM.

[4] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filter-
ing for implicit feedback datasets. In Proceedings of the
2008 Eighth IEEE International Conference on Data Min-
ing (ICDM), pages 263–272, Pisa, Italy, 2008. IEEE. Work
done while Koren was at AT&T Labs – Research.

[5] M. C. Jung, J. Monteil, P. Schulz, and V. Vaskovych. Person-
alised outfit recommendation via history-aware transformers.
arXiv preprint arXiv:2407.00289, 2024.

[6] Z. Li, J. Li, T. Wang, X. Gong, Y. Wei, and P. Luo. Ocphn:
Outfit compatibility prediction with hypergraph networks.
Mathematics, 10(20):3913, 2022.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Fo-
cal loss for dense object detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(12):318–327,
2017. Presented at ICCV 2017.

8

https://github.com/owj0421/outfit-transformer


[8] S. Lu, X. Zhu, Y. Wu, X. Wan, and F. Gao. Outfit compat-
ibility prediction with multi-layered feature fusion network.
Pattern Recognition Letters, 147:150–156, 2021.

[9] N. Reimers and I. Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

[10] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to
reweight examples for robust deep learning. In Proceedings
of the 35th International Conference on Machine Learning
(ICML), volume 80, pages 4334–4343. PMLR, 2018.

[11] R. Sarkar, N. Bodla, M. I. Vasileva, Y.-L. Lin, A. Beniwal,
A. Lu, and G. Medioni. Outfittransformer: Learning outfit
representations for fashion recommendation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), Vancouver, Canada, 2023. IEEE.

[12] M. I. Vasileva, B. A. Plummer, K. Dusad, S. Rajpal, R. Ku-
mar, and D. Forsyth. Learning type-aware embeddings for
fashion compatibility. arXiv preprint arXiv:1803.09196,
2018.

[13] B. S. Vivek, G. Bhattacharya, J. Gubbi, B. L. V, A. Pal, and
P. Balamuralidhar. Personalized outfit compatibility predic-
tion using outfit graph network. IEEE Access, 2023.

[14] J. Wang, X. Cheng, R. Wang, and S. Liu. Learning out-
fit compatibility with graph attention network and visual-
semantic embedding. In 2021 IEEE International Confer-
ence on Multimedia and Expo (ICME), pages 1–6. IEEE,
2021.

[15] X. Wang. Example Weighting for Deep Represen-
tation Learning. Doctor of Philosophy, Queen’s
University Belfast, Belfast, United Kingdom, 2020.
https://pure.qub.ac.uk/en/studentTheses/
example-weighting-for-deep-representation-learning.

[16] X. Wang, B. Wu, Y. Ye, and Y. Zhong. Outfit compatibility
prediction and diagnosis with multilayered comparison net-
work. In Proceedings of the 27th ACM International Confer-
ence on Multimedia (MM ’19), pages 329–337, Nice, France,
2019. Association for Computing Machinery.

9

https://pure.qub.ac.uk/en/studentTheses/example-weighting-for-deep-representation-learning
https://pure.qub.ac.uk/en/studentTheses/example-weighting-for-deep-representation-learning

